OvertakingLegend/Assets/Amazing Assets/Curved World/Shaders/Built-In/Terrain/TerrainEngine.cginc

347 lines
12 KiB
HLSL

// Curved World <http://u3d.as/1W8h>
// Copyright (c) Amazing Assets <https://amazingassets.world>
#ifndef TERRAIN_ENGINE_INCLUDED
#define TERRAIN_ENGINE_INCLUDED
// Terrain engine shader helpers
CBUFFER_START(UnityTerrain)
// grass
fixed4 _WavingTint;
float4 _WaveAndDistance; // wind speed, wave size, wind amount, max sqr distance
float4 _CameraPosition; // .xyz = camera position, .w = 1 / (max sqr distance)
float3 _CameraRight, _CameraUp;
// trees
fixed4 _TreeInstanceColor;
float4 _TreeInstanceScale;
float4x4 _TerrainEngineBendTree;
float4 _SquashPlaneNormal;
float _SquashAmount;
// billboards
float3 _TreeBillboardCameraRight;
float4 _TreeBillboardCameraUp;
float4 _TreeBillboardCameraFront;
float4 _TreeBillboardCameraPos;
float4 _TreeBillboardDistances; // x = max distance ^ 2
CBUFFER_END
// ---- Vertex input structures
struct appdata_tree {
float4 vertex : POSITION; // position
float4 tangent : TANGENT; // directional AO
float3 normal : NORMAL; // normal
fixed4 color : COLOR; // .w = bend factor
float4 texcoord : TEXCOORD0; // UV
UNITY_VERTEX_INPUT_INSTANCE_ID
};
struct appdata_tree_billboard {
float4 vertex : POSITION;
fixed4 color : COLOR; // Color
float4 texcoord : TEXCOORD0; // UV Coordinates
float2 texcoord1 : TEXCOORD1; // Billboard extrusion
UNITY_VERTEX_INPUT_INSTANCE_ID
};
// ---- Grass helpers
// Calculate a 4 fast sine-cosine pairs
// val: the 4 input values - each must be in the range (0 to 1)
// s: The sine of each of the 4 values
// c: The cosine of each of the 4 values
void FastSinCos (float4 val, out float4 s, out float4 c) {
val = val * 6.408849 - 3.1415927;
// powers for taylor series
float4 r5 = val * val; // wavevec ^ 2
float4 r6 = r5 * r5; // wavevec ^ 4;
float4 r7 = r6 * r5; // wavevec ^ 6;
float4 r8 = r6 * r5; // wavevec ^ 8;
float4 r1 = r5 * val; // wavevec ^ 3
float4 r2 = r1 * r5; // wavevec ^ 5;
float4 r3 = r2 * r5; // wavevec ^ 7;
//Vectors for taylor's series expansion of sin and cos
float4 sin7 = {1, -0.16161616, 0.0083333, -0.00019841};
float4 cos8 = {-0.5, 0.041666666, -0.0013888889, 0.000024801587};
// sin
s = val + r1 * sin7.y + r2 * sin7.z + r3 * sin7.w;
// cos
c = 1 + r5 * cos8.x + r6 * cos8.y + r7 * cos8.z + r8 * cos8.w;
}
fixed4 TerrainWaveGrass (inout float4 vertex, float waveAmount, fixed4 color)
{
float4 _waveXSize = float4(0.012, 0.02, 0.06, 0.024) * _WaveAndDistance.y;
float4 _waveZSize = float4 (0.006, .02, 0.02, 0.05) * _WaveAndDistance.y;
float4 waveSpeed = float4 (0.3, .5, .4, 1.2) * 4;
float4 _waveXmove = float4(0.012, 0.02, -0.06, 0.048) * 2;
float4 _waveZmove = float4 (0.006, .02, -0.02, 0.1);
float4 waves;
waves = vertex.x * _waveXSize;
waves += vertex.z * _waveZSize;
// Add in time to model them over time
waves += _WaveAndDistance.x * waveSpeed;
float4 s, c;
waves = frac (waves);
FastSinCos (waves, s,c);
s = s * s;
s = s * s;
float lighting = dot (s, normalize (float4 (1,1,.4,.2))) * .7;
s = s * waveAmount;
float3 waveMove = float3 (0,0,0);
waveMove.x = dot (s, _waveXmove);
waveMove.z = dot (s, _waveZmove);
vertex.xz -= waveMove.xz * _WaveAndDistance.z;
// apply color animation
// fix for dx11/etc warning
fixed3 waveColor = lerp (fixed3(0.5,0.5,0.5), _WavingTint.rgb, fixed3(lighting,lighting,lighting));
// Fade the grass out before detail distance.
// Saturate because Radeon HD drivers on OS X 10.4.10 don't saturate vertex colors properly.
float3 offset = vertex.xyz - _CameraPosition.xyz;
color.a = saturate (2 * (_WaveAndDistance.w - dot (offset, offset)) * _CameraPosition.w);
return fixed4(2 * waveColor * color.rgb, color.a);
}
void TerrainBillboardGrass( inout float4 pos, float2 offset )
{
float3 grasspos = pos.xyz - _CameraPosition.xyz;
if (dot(grasspos, grasspos) > _WaveAndDistance.w)
offset = 0.0;
pos.xyz += offset.x * _CameraRight.xyz;
pos.xyz += offset.y * _CameraUp.xyz;
}
// Grass: appdata_full usage
// color - .xyz = color, .w = wave scale
// normal - normal
// tangent.xy - billboard extrusion
// texcoord - UV coords
// texcoord1 - 2nd UV coords
void WavingGrassVert (inout appdata_full v)
{
// MeshGrass v.color.a: 1 on top vertices, 0 on bottom vertices
// _WaveAndDistance.z == 0 for MeshLit
float waveAmount = v.color.a * _WaveAndDistance.z;
v.color = TerrainWaveGrass (v.vertex, waveAmount, v.color);
}
void WavingGrassBillboardVert (inout appdata_full v)
{
CURVEDWORLD_TRANSFORM_VERTEX(v.vertex);
TerrainBillboardGrass (v.vertex, v.tangent.xy);
// wave amount defined by the grass height
float waveAmount = v.tangent.y;
v.color = TerrainWaveGrass (v.vertex, waveAmount, v.color);
}
// ---- Tree helpers
inline float4 Squash(in float4 pos)
{
// To squash the tree the vertex needs to be moved in the direction
// of the squash plane. The plane is defined by the the:
// plane point - point lying on the plane, defined in model space
// plane normal - _SquashPlaneNormal.xyz
// we're pushing squashed tree plane in direction of planeNormal by amount of _SquashPlaneNormal.w
// this squashing has to match logic of tree billboards
float3 planeNormal = _SquashPlaneNormal.xyz;
// unoptimized version:
//float3 planePoint = -planeNormal * _SquashPlaneNormal.w;
//float3 projectedVertex = pos.xyz + dot(planeNormal, (planePoint - pos)) * planeNormal;
// optimized version:
float3 projectedVertex = pos.xyz - (dot(planeNormal.xyz, pos.xyz) + _SquashPlaneNormal.w) * planeNormal;
pos = float4(lerp(projectedVertex, pos.xyz, _SquashAmount), 1);
return pos;
}
void TerrainAnimateTree( inout float4 pos, float alpha )
{
pos.xyz *= _TreeInstanceScale.xyz;
float3 bent = mul(_TerrainEngineBendTree, float4(pos.xyz, 0.0)).xyz;
pos.xyz = lerp( pos.xyz, bent, alpha );
pos = Squash(pos);
}
// ---- Billboarded tree helpers
void TerrainBillboardTree( inout float4 pos, float2 offset, float offsetz )
{
float3 treePos = pos.xyz - _TreeBillboardCameraPos.xyz;
float treeDistanceSqr = dot(treePos, treePos);
if( treeDistanceSqr > _TreeBillboardDistances.x )
offset.xy = offsetz = 0.0;
// positioning of billboard vertices horizontally
pos.xyz += _TreeBillboardCameraRight.xyz * offset.x;
// tree billboards can have non-uniform scale,
// so when looking from above (or bellow) we must use
// billboard width as billboard height
// 1) non-compensating
//pos.xyz += _TreeBillboardCameraUp.xyz * offset.y;
// 2) correct compensating (?)
//float alpha = _TreeBillboardCameraPos.w;
//float a = offset.y;
//float b = offsetz;
// 2a) using elipse-radius formula
////float r = abs(a * b) / sqrt(sqr(a * sin(alpha)) + sqr(b * cos(alpha))) * sign(b);
//float r = abs(a) * b / sqrt(sqr(a * sin(alpha)) + sqr(b * cos(alpha)));
// 2b) sin-cos lerp
//float r = b * sin(alpha) + a * cos(alpha);
//pos.xyz += _TreeBillboardCameraUp.xyz * r;
// 3) incorrect compensating (using lerp)
// _TreeBillboardCameraPos.w contains ImposterRenderTexture::GetBillboardAngleFactor()
//float billboardAngleFactor = _TreeBillboardCameraPos.w;
//float r = lerp(offset.y, offsetz, billboardAngleFactor);
//pos.xyz += _TreeBillboardCameraUp.xyz * r;
// so now we take solution #3 and complicate it even further...
//
// case 49851: Flying trees
// The problem was that tree billboard was fixed on it's center, which means
// the root of the tree is not fixed and can float around. This can be quite visible
// on slopes (checkout the case on fogbugz for screenshots).
//
// We're fixing this by fixing billboards to the root of the tree.
// Note that root of the tree is not necessary the bottom of the tree -
// there might be significant part of the tree bellow terrain.
// This fixation mode doesn't work when looking from above/below, because
// billboard is so close to the ground, so we offset it by certain distance
// when viewing angle is bigger than certain treshold (40 deg at the moment)
// _TreeBillboardCameraPos.w contains ImposterRenderTexture::billboardAngleFactor
float billboardAngleFactor = _TreeBillboardCameraPos.w;
// The following line performs two things:
// 1) peform non-uniform scale, see "3) incorrect compensating (using lerp)" above
// 2) blend between vertical and horizontal billboard mode
float radius = lerp(offset.y, offsetz, billboardAngleFactor);
// positioning of billboard vertices veritally
pos.xyz += _TreeBillboardCameraUp.xyz * radius;
// _TreeBillboardCameraUp.w contains ImposterRenderTexture::billboardOffsetFactor
float billboardOffsetFactor = _TreeBillboardCameraUp.w;
// Offsetting billboad from the ground, so it doesn't get clipped by ztest.
// In theory we should use billboardCenterOffsetY instead of offset.x,
// but we can't because offset.y is not the same for all 4 vertices, so
// we use offset.x which is the same for all 4 vertices (except sign).
// And it doesn't matter a lot how much we offset, we just need to offset
// it by some distance
pos.xyz += _TreeBillboardCameraFront.xyz * abs(offset.x) * billboardOffsetFactor;
}
// ---- Tree Creator
float4 _Wind;
// Expand billboard and modify normal + tangent to fit
inline void ExpandBillboard (in float4x4 mat, inout float4 pos, inout float3 normal, inout float4 tangent)
{
// tangent.w = 0 if this is a billboard
float isBillboard = 1.0f - abs(tangent.w);
// billboard normal
float3 norb = normalize(mul(float4(normal, 0), mat)).xyz;
// billboard tangent
float3 tanb = normalize(mul(float4(tangent.xyz, 0.0f), mat)).xyz;
pos += mul(float4(normal.xy, 0, 0), mat) * isBillboard;
normal = lerp(normal, norb, isBillboard);
tangent = lerp(tangent, float4(tanb, -1.0f), isBillboard);
}
float4 SmoothCurve( float4 x ) {
return x * x *( 3.0 - 2.0 * x );
}
float4 TriangleWave( float4 x ) {
return abs( frac( x + 0.5 ) * 2.0 - 1.0 );
}
float4 SmoothTriangleWave( float4 x ) {
return SmoothCurve( TriangleWave( x ) );
}
// Detail bending
inline float4 AnimateVertex(float4 pos, float3 normal, float4 animParams)
{
// animParams stored in color
// animParams.x = branch phase
// animParams.y = edge flutter factor
// animParams.z = primary factor
// animParams.w = secondary factor
float fDetailAmp = 0.1f;
float fBranchAmp = 0.3f;
// Phases (object, vertex, branch)
float fObjPhase = dot(unity_ObjectToWorld._14_24_34, 1);
float fBranchPhase = fObjPhase + animParams.x;
float fVtxPhase = dot(pos.xyz, animParams.y + fBranchPhase);
// x is used for edges; y is used for branches
float2 vWavesIn = _Time.yy + float2(fVtxPhase, fBranchPhase );
// 1.975, 0.793, 0.375, 0.193 are good frequencies
float4 vWaves = (frac( vWavesIn.xxyy * float4(1.975, 0.793, 0.375, 0.193) ) * 2.0 - 1.0);
vWaves = SmoothTriangleWave( vWaves );
float2 vWavesSum = vWaves.xz + vWaves.yw;
// Edge (xz) and branch bending (y)
float3 bend = animParams.y * fDetailAmp * normal.xyz;
bend.y = animParams.w * fBranchAmp;
pos.xyz += ((vWavesSum.xyx * bend) + (_Wind.xyz * vWavesSum.y * animParams.w)) * _Wind.w;
// Primary bending
// Displace position
pos.xyz += animParams.z * _Wind.xyz;
return pos;
}
#endif