// Curved World // Copyright (c) Amazing Assets #ifndef TERRAIN_ENGINE_INCLUDED #define TERRAIN_ENGINE_INCLUDED // Terrain engine shader helpers CBUFFER_START(UnityTerrain) // grass fixed4 _WavingTint; float4 _WaveAndDistance; // wind speed, wave size, wind amount, max sqr distance float4 _CameraPosition; // .xyz = camera position, .w = 1 / (max sqr distance) float3 _CameraRight, _CameraUp; // trees fixed4 _TreeInstanceColor; float4 _TreeInstanceScale; float4x4 _TerrainEngineBendTree; float4 _SquashPlaneNormal; float _SquashAmount; // billboards float3 _TreeBillboardCameraRight; float4 _TreeBillboardCameraUp; float4 _TreeBillboardCameraFront; float4 _TreeBillboardCameraPos; float4 _TreeBillboardDistances; // x = max distance ^ 2 CBUFFER_END // ---- Vertex input structures struct appdata_tree { float4 vertex : POSITION; // position float4 tangent : TANGENT; // directional AO float3 normal : NORMAL; // normal fixed4 color : COLOR; // .w = bend factor float4 texcoord : TEXCOORD0; // UV UNITY_VERTEX_INPUT_INSTANCE_ID }; struct appdata_tree_billboard { float4 vertex : POSITION; fixed4 color : COLOR; // Color float4 texcoord : TEXCOORD0; // UV Coordinates float2 texcoord1 : TEXCOORD1; // Billboard extrusion UNITY_VERTEX_INPUT_INSTANCE_ID }; // ---- Grass helpers // Calculate a 4 fast sine-cosine pairs // val: the 4 input values - each must be in the range (0 to 1) // s: The sine of each of the 4 values // c: The cosine of each of the 4 values void FastSinCos (float4 val, out float4 s, out float4 c) { val = val * 6.408849 - 3.1415927; // powers for taylor series float4 r5 = val * val; // wavevec ^ 2 float4 r6 = r5 * r5; // wavevec ^ 4; float4 r7 = r6 * r5; // wavevec ^ 6; float4 r8 = r6 * r5; // wavevec ^ 8; float4 r1 = r5 * val; // wavevec ^ 3 float4 r2 = r1 * r5; // wavevec ^ 5; float4 r3 = r2 * r5; // wavevec ^ 7; //Vectors for taylor's series expansion of sin and cos float4 sin7 = {1, -0.16161616, 0.0083333, -0.00019841}; float4 cos8 = {-0.5, 0.041666666, -0.0013888889, 0.000024801587}; // sin s = val + r1 * sin7.y + r2 * sin7.z + r3 * sin7.w; // cos c = 1 + r5 * cos8.x + r6 * cos8.y + r7 * cos8.z + r8 * cos8.w; } fixed4 TerrainWaveGrass (inout float4 vertex, float waveAmount, fixed4 color) { float4 _waveXSize = float4(0.012, 0.02, 0.06, 0.024) * _WaveAndDistance.y; float4 _waveZSize = float4 (0.006, .02, 0.02, 0.05) * _WaveAndDistance.y; float4 waveSpeed = float4 (0.3, .5, .4, 1.2) * 4; float4 _waveXmove = float4(0.012, 0.02, -0.06, 0.048) * 2; float4 _waveZmove = float4 (0.006, .02, -0.02, 0.1); float4 waves; waves = vertex.x * _waveXSize; waves += vertex.z * _waveZSize; // Add in time to model them over time waves += _WaveAndDistance.x * waveSpeed; float4 s, c; waves = frac (waves); FastSinCos (waves, s,c); s = s * s; s = s * s; float lighting = dot (s, normalize (float4 (1,1,.4,.2))) * .7; s = s * waveAmount; float3 waveMove = float3 (0,0,0); waveMove.x = dot (s, _waveXmove); waveMove.z = dot (s, _waveZmove); vertex.xz -= waveMove.xz * _WaveAndDistance.z; // apply color animation // fix for dx11/etc warning fixed3 waveColor = lerp (fixed3(0.5,0.5,0.5), _WavingTint.rgb, fixed3(lighting,lighting,lighting)); // Fade the grass out before detail distance. // Saturate because Radeon HD drivers on OS X 10.4.10 don't saturate vertex colors properly. float3 offset = vertex.xyz - _CameraPosition.xyz; color.a = saturate (2 * (_WaveAndDistance.w - dot (offset, offset)) * _CameraPosition.w); return fixed4(2 * waveColor * color.rgb, color.a); } void TerrainBillboardGrass( inout float4 pos, float2 offset ) { float3 grasspos = pos.xyz - _CameraPosition.xyz; if (dot(grasspos, grasspos) > _WaveAndDistance.w) offset = 0.0; pos.xyz += offset.x * _CameraRight.xyz; pos.xyz += offset.y * _CameraUp.xyz; } // Grass: appdata_full usage // color - .xyz = color, .w = wave scale // normal - normal // tangent.xy - billboard extrusion // texcoord - UV coords // texcoord1 - 2nd UV coords void WavingGrassVert (inout appdata_full v) { // MeshGrass v.color.a: 1 on top vertices, 0 on bottom vertices // _WaveAndDistance.z == 0 for MeshLit float waveAmount = v.color.a * _WaveAndDistance.z; v.color = TerrainWaveGrass (v.vertex, waveAmount, v.color); } void WavingGrassBillboardVert (inout appdata_full v) { CURVEDWORLD_TRANSFORM_VERTEX(v.vertex); TerrainBillboardGrass (v.vertex, v.tangent.xy); // wave amount defined by the grass height float waveAmount = v.tangent.y; v.color = TerrainWaveGrass (v.vertex, waveAmount, v.color); } // ---- Tree helpers inline float4 Squash(in float4 pos) { // To squash the tree the vertex needs to be moved in the direction // of the squash plane. The plane is defined by the the: // plane point - point lying on the plane, defined in model space // plane normal - _SquashPlaneNormal.xyz // we're pushing squashed tree plane in direction of planeNormal by amount of _SquashPlaneNormal.w // this squashing has to match logic of tree billboards float3 planeNormal = _SquashPlaneNormal.xyz; // unoptimized version: //float3 planePoint = -planeNormal * _SquashPlaneNormal.w; //float3 projectedVertex = pos.xyz + dot(planeNormal, (planePoint - pos)) * planeNormal; // optimized version: float3 projectedVertex = pos.xyz - (dot(planeNormal.xyz, pos.xyz) + _SquashPlaneNormal.w) * planeNormal; pos = float4(lerp(projectedVertex, pos.xyz, _SquashAmount), 1); return pos; } void TerrainAnimateTree( inout float4 pos, float alpha ) { pos.xyz *= _TreeInstanceScale.xyz; float3 bent = mul(_TerrainEngineBendTree, float4(pos.xyz, 0.0)).xyz; pos.xyz = lerp( pos.xyz, bent, alpha ); pos = Squash(pos); } // ---- Billboarded tree helpers void TerrainBillboardTree( inout float4 pos, float2 offset, float offsetz ) { float3 treePos = pos.xyz - _TreeBillboardCameraPos.xyz; float treeDistanceSqr = dot(treePos, treePos); if( treeDistanceSqr > _TreeBillboardDistances.x ) offset.xy = offsetz = 0.0; // positioning of billboard vertices horizontally pos.xyz += _TreeBillboardCameraRight.xyz * offset.x; // tree billboards can have non-uniform scale, // so when looking from above (or bellow) we must use // billboard width as billboard height // 1) non-compensating //pos.xyz += _TreeBillboardCameraUp.xyz * offset.y; // 2) correct compensating (?) //float alpha = _TreeBillboardCameraPos.w; //float a = offset.y; //float b = offsetz; // 2a) using elipse-radius formula ////float r = abs(a * b) / sqrt(sqr(a * sin(alpha)) + sqr(b * cos(alpha))) * sign(b); //float r = abs(a) * b / sqrt(sqr(a * sin(alpha)) + sqr(b * cos(alpha))); // 2b) sin-cos lerp //float r = b * sin(alpha) + a * cos(alpha); //pos.xyz += _TreeBillboardCameraUp.xyz * r; // 3) incorrect compensating (using lerp) // _TreeBillboardCameraPos.w contains ImposterRenderTexture::GetBillboardAngleFactor() //float billboardAngleFactor = _TreeBillboardCameraPos.w; //float r = lerp(offset.y, offsetz, billboardAngleFactor); //pos.xyz += _TreeBillboardCameraUp.xyz * r; // so now we take solution #3 and complicate it even further... // // case 49851: Flying trees // The problem was that tree billboard was fixed on it's center, which means // the root of the tree is not fixed and can float around. This can be quite visible // on slopes (checkout the case on fogbugz for screenshots). // // We're fixing this by fixing billboards to the root of the tree. // Note that root of the tree is not necessary the bottom of the tree - // there might be significant part of the tree bellow terrain. // This fixation mode doesn't work when looking from above/below, because // billboard is so close to the ground, so we offset it by certain distance // when viewing angle is bigger than certain treshold (40 deg at the moment) // _TreeBillboardCameraPos.w contains ImposterRenderTexture::billboardAngleFactor float billboardAngleFactor = _TreeBillboardCameraPos.w; // The following line performs two things: // 1) peform non-uniform scale, see "3) incorrect compensating (using lerp)" above // 2) blend between vertical and horizontal billboard mode float radius = lerp(offset.y, offsetz, billboardAngleFactor); // positioning of billboard vertices veritally pos.xyz += _TreeBillboardCameraUp.xyz * radius; // _TreeBillboardCameraUp.w contains ImposterRenderTexture::billboardOffsetFactor float billboardOffsetFactor = _TreeBillboardCameraUp.w; // Offsetting billboad from the ground, so it doesn't get clipped by ztest. // In theory we should use billboardCenterOffsetY instead of offset.x, // but we can't because offset.y is not the same for all 4 vertices, so // we use offset.x which is the same for all 4 vertices (except sign). // And it doesn't matter a lot how much we offset, we just need to offset // it by some distance pos.xyz += _TreeBillboardCameraFront.xyz * abs(offset.x) * billboardOffsetFactor; } // ---- Tree Creator float4 _Wind; // Expand billboard and modify normal + tangent to fit inline void ExpandBillboard (in float4x4 mat, inout float4 pos, inout float3 normal, inout float4 tangent) { // tangent.w = 0 if this is a billboard float isBillboard = 1.0f - abs(tangent.w); // billboard normal float3 norb = normalize(mul(float4(normal, 0), mat)).xyz; // billboard tangent float3 tanb = normalize(mul(float4(tangent.xyz, 0.0f), mat)).xyz; pos += mul(float4(normal.xy, 0, 0), mat) * isBillboard; normal = lerp(normal, norb, isBillboard); tangent = lerp(tangent, float4(tanb, -1.0f), isBillboard); } float4 SmoothCurve( float4 x ) { return x * x *( 3.0 - 2.0 * x ); } float4 TriangleWave( float4 x ) { return abs( frac( x + 0.5 ) * 2.0 - 1.0 ); } float4 SmoothTriangleWave( float4 x ) { return SmoothCurve( TriangleWave( x ) ); } // Detail bending inline float4 AnimateVertex(float4 pos, float3 normal, float4 animParams) { // animParams stored in color // animParams.x = branch phase // animParams.y = edge flutter factor // animParams.z = primary factor // animParams.w = secondary factor float fDetailAmp = 0.1f; float fBranchAmp = 0.3f; // Phases (object, vertex, branch) float fObjPhase = dot(unity_ObjectToWorld._14_24_34, 1); float fBranchPhase = fObjPhase + animParams.x; float fVtxPhase = dot(pos.xyz, animParams.y + fBranchPhase); // x is used for edges; y is used for branches float2 vWavesIn = _Time.yy + float2(fVtxPhase, fBranchPhase ); // 1.975, 0.793, 0.375, 0.193 are good frequencies float4 vWaves = (frac( vWavesIn.xxyy * float4(1.975, 0.793, 0.375, 0.193) ) * 2.0 - 1.0); vWaves = SmoothTriangleWave( vWaves ); float2 vWavesSum = vWaves.xz + vWaves.yw; // Edge (xz) and branch bending (y) float3 bend = animParams.y * fDetailAmp * normal.xyz; bend.y = animParams.w * fBranchAmp; pos.xyz += ((vWavesSum.xyx * bend) + (_Wind.xyz * vWavesSum.y * animParams.w)) * _Wind.w; // Primary bending // Displace position pos.xyz += animParams.z * _Wind.xyz; return pos; } #endif